Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20336, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37990046

RESUMO

The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 µg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.


Assuntos
Anti-Infecciosos , Solanum lycopersicum , Proteínas Ligantes de Grupo Heme , Anti-Infecciosos/farmacologia , Clavibacter , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas syringae
2.
Biomater Sci ; 11(3): 1042-1055, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36562316

RESUMO

Advanced antibacterial biomaterials can help reduce the severe consequences of infections. Using copper compounds is an excellent option to achieve this goal; they offer a combination of regenerative and antimicrobial functions. In this study, new CuCl2-doped sol-gel coatings were developed and physicochemically characterised. Their osteogenic and inflammatory responses were tested in vitro using human osteoblasts and THP-1 macrophages. Their antibacterial effect was evaluated using Escherichia coli and Staphylococcus aureus. The Cu influence on the adsorption of human serum proteins was analysed employing proteomics. The materials released Cu2+ and were not cytotoxic. The osteoblasts in contact with these materials showed an increased ALP, BMP2 and OCN gene expression. THP-1 showed an increase in pro-inflammatory markers related to M1 polarization. Moreover, Cu-doped coatings displayed a potent antibacterial behaviour against E. coli and S. aureus. The copper ions affected the adsorption of proteins related to immunity, coagulation, angiogenesis, fibrinolysis, and osteogenesis. Interestingly, the coatings had increased affinity to proteins with antibacterial functions and proteins linked to the complement system activation that can lead to direct bacterial killing via large pore-forming complexes. These results contribute to our understanding of the antibacterial mechanisms of Cu-biomaterials and their interaction with biological systems.


Assuntos
Materiais Revestidos Biocompatíveis , Staphylococcus aureus , Humanos , Cobre/química , Escherichia coli , Proteômica , Proteínas , Antibacterianos/farmacologia , Antibacterianos/química
3.
Plants (Basel) ; 11(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432899

RESUMO

Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties from the Mediterranean basin and two commercial genotypes were selected to characterize their responses at high temperatures. The screening of phenotypes under heat shock conditions allowed to classify the tomato genotypes as: heat-sensitive: TH-30, ADX2; intermediate: ISR-10 and Ailsa Craig; heat-tolerant: MM and MO-10. These results reveal the intra-genetical variation of heat stress responses, which can be exploited as promising sources of tolerance to climate change conditions. Two different thermotolerance strategies were observed. The MO-10 plants tolerance was based on the control of the leaf cooling mechanism and the rapid RBOHB activation and ABA signaling pathways. The variety MM displayed a different strategy based on the activation of HSP70 and 90, as well as accumulation of phenolic compounds correlated with early induction of PAL expression. The importance of secondary metabolism in the recovery phase has been also revealed. Understanding the molecular events allowing plants to overcome heat stress constitutes a promising approach for selecting climate resilient tomato varieties.

4.
Plant Sci ; 318: 111210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351299

RESUMO

The use of fungal endophytes is considered as a new tool to confer resistance in plants against stresses. However, the mechanisms involved in colonization as well as in the induction of resistance by the endophytes are usually unclear. In this work, we tested whether a fungal endophyte isolated from an ancestor of wheat could induce resistance in plants of a different class from the ones that were isolated from the beginning. Seeds of Solanum lycopersicum were inoculated with Acremonium sclerotigenum and after four weeks, seedlings were inoculated with the bacterium Pseudomonas syringae pv tomato. Plants inoculated with endophytes showed significantly lower symptoms of infection as well as lower levels of colony forming units compared with control plants. Moreover, the presence of the endophytes induced an enhancement of Jasmonic acid (JA) upon inoculation with P. syringae compared with endophyte free plants. To ascertain the implication of JA in the resistance induced by A. sclerotigenum, two mutants defective in JA were tested. Results showed that the endophyte is not able to induce resistance in the mutant spr2, which is truncated in the first step of JA biosynthesis. On the contrary, acx1 mutant plants, which are unable to synthesize JA from OPC8, show a phenotype similar to wild type plants. Moreover, experiments with GFP-tagged endophytes showed no differences in the colonization in both mutants. In conclusion, the jasmonic acid pathway is required for the resistance mediated by the endophyte A. sclerotigenum in tomato against the biotrophic bacterium P. syringae but is not necessary for the colonization.


Assuntos
Solanum lycopersicum , Acremonium , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Oxilipinas , Pseudomonas syringae
5.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328394

RESUMO

Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.


Assuntos
Desenvolvimento Vegetal , Putrescina , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poliaminas/metabolismo , Estresse Fisiológico
6.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215777

RESUMO

Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.


Assuntos
Bacteriófagos/química , Bacteriófagos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Conservação de Alimentos/métodos , Doenças das Plantas/prevenção & controle , Ralstonia solanacearum/virologia , Solanum lycopersicum/microbiologia , Conservação de Alimentos/economia , Liofilização , Frutas/economia , Frutas/microbiologia , Solanum lycopersicum/economia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia
7.
J Proteome Res ; 20(1): 433-443, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32989989

RESUMO

The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection.


Assuntos
Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Doenças das Plantas/genética , Proteômica , Pseudomonas syringae , Triptofano/análogos & derivados
8.
Antioxidants (Basel) ; 9(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664231

RESUMO

The apoplast comprises the intercellular space, the cell walls, and the xylem. Important functions for the plant, such as nutrient and water transport, cellulose synthesis, and the synthesis of molecules involved in plant defense against both biotic and abiotic stresses, take place in it. The most important molecules are ROS, antioxidants, proteins, and hormones. Even though only a small quantity of ROS is localized within the apoplast, apoplastic ROS have an important role in plant development and plant responses to various stress conditions. In the apoplast, like in the intracellular cell compartments, a specific set of antioxidants can be found that can detoxify the different types of ROS produced in it. These scavenging ROS components confer stress tolerance and avoid cellular damage. Moreover, the production and accumulation of proteins and peptides in the apoplast take place in response to various stresses. Hormones are also present in the apoplast where they perform important functions. In addition, the apoplast is also the space where microbe-associated molecular Patterns (MAMPs) are secreted by pathogens. In summary, the diversity of molecules found in the apoplast highlights its importance in the survival of plant cells.

9.
Plants (Basel) ; 9(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978963

RESUMO

The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae.

10.
Plants (Basel) ; 8(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269704

RESUMO

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and its target SlMYB transcription factor genes in tomato plants of cv. Ailsa Craig grown in deprived water conditions or in response to mechanical damage caused by the Colorado potato beetle, a devastating insect pest of Solanaceae plants. Results showed that sly-miR159 regulatory function in the tomato plants response to distinct stresses might be mediated by differential stress-specific MYB transcription factor targeting. sly-miR159 targeting of SlMYB33 transcription factor transcript correlated with accumulation of the osmoprotective compounds proline and putrescine, which promote drought tolerance. This highlights the potential role of sly-miR159 in tomato plants' adaptation to water deficit conditions.

11.
Front Microbiol ; 9: 2056, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233534

RESUMO

Plants can produce numerous natural products, many of which have been shown to confer protection against microbial attack. In this way, we identified 1-methyltryptophan (1-MT), a natural compound produced by tomato plants in response to Pseudomonas syringae attack, whose application by soil drench provided protection against this pathogen. In the present work, we have studied the mechanisms underlying this protection. The results demonstrated that 1-MT can be considered a new activator of plant defense responses that acts by inhibiting the stomatal opening produced by coronatine (COR) and could thereby, prevent bacteria entering the mesophyll. Besides, 1-MT acts by blocking the jasmonic acid (JA) pathway that, could avoid manipulation of the salicylic acid (SA) pathway by the bacterium, and thus hinder its growth. Although the concentration of 1-MT reached in the plant did not show antimicrobial effects, we cannot rule out a role for 1-MT acting alone because it affects the expression of the fliC gene that is involved in synthesis of the flagellum. These changes would result in reduced bacterium motility and, therefore, infective capacity. The results highlight the effect of a tryptophan derivative on induced resistance in plants.

12.
Pest Manag Sci ; 74(11): 2601-2607, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29687602

RESUMO

BACKGROUND: Phytopathogenic problems caused by the bacterial pathogen Pseudomonas syringae in tomato are becoming more serious due to the emergence of strains resistant to classical pesticides. This has led to research into new formulations with lower environmental problems. One of the most promising alternatives to the use of classical pesticides is the induction of natural plant defences. New formulations based on Cu complexed with heptagluconic acid induce plant innate defences and could be an alternative to classical treatments based on inorganic Cu against bacterial speck. To study the efficacy of this compound in tomato against P. syringae, we tested its systemic effect Applying the treatments via radicular. RESULTS: Treated plants showed less infection development and lower number of viable bacteria in leaves. We also observed better performance of parameters involved in plant resistance such as the antioxidant response and the accumulation of phenolic compounds. CONCLUSION: Results showed that soil drench applications can be highly effective for the prevention and control of bacterial speck in tomato plants, showing a reduction in symptoms of ∼ 50%. Moreover, application of Cu heptagluconate induced accumulation of the plant polyphenols caffeic and chlorogenic acids, and reduced the amount of reactive oxygen species in infected plants. © 2018 Society of Chemical Industry.


Assuntos
Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/imunologia , Açúcares Ácidos/farmacologia , Cobre/farmacologia , Gluconatos/farmacologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia
13.
Pest Manag Sci ; 73(5): 1017-1023, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27558547

RESUMO

BACKGROUND: Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. RESULTS: In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. CONCLUSION: The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Enxofre/metabolismo , Enxofre/farmacologia , Clorofila/metabolismo , Glucanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo
14.
Plant J ; 84(1): 125-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26270176

RESUMO

In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid-induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1-methyltryptophan was shown to be associated with the tomato-Pst and tomato-Bot interactions as well as with hexanoic acid-induced resistance. Root application of this Trp-derived metabolite also demonstrated its ability to protect tomato plants against both pathogens.


Assuntos
Botrytis/fisiologia , Resistência à Doença , Pseudomonas syringae/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Triptofano/análogos & derivados , Regulação da Expressão Gênica de Plantas , Metabolômica , Triptofano/metabolismo
15.
Plant J ; 81(2): 304-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25407262

RESUMO

Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.


Assuntos
Botrytis/fisiologia , Compostos de Diazônio/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Piridinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
16.
PLoS One ; 9(9): e106429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244125

RESUMO

The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.


Assuntos
Caproatos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo
17.
Mol Plant Pathol ; 15(6): 550-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24320938

RESUMO

Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection.


Assuntos
Botrytis/patogenicidade , Caproatos/farmacologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Virulência
18.
Plant J ; 77(3): 418-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286390

RESUMO

The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.


Assuntos
Ciclopentanos/metabolismo , Enterobacteriaceae/patogenicidade , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Pectinas/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Solanum tuberosum/imunologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Resistência à Doença , Enterobacteriaceae/enzimologia , Esterificação , Interações Hospedeiro-Patógeno , Oxirredutases Intramoleculares/genética , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Fatores de Virulência , Ferimentos e Lesões
19.
Mol Plant Pathol ; 14(4): 342-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23279078

RESUMO

Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.


Assuntos
Caproatos/farmacologia , Ciclopentanos/metabolismo , Resistência à Doença/efeitos dos fármacos , Oxilipinas/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Ácido Salicílico/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Ácido Abscísico/metabolismo , Aminoácidos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Indenos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Oxilipinas/química , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Pseudomonas syringae/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Água/farmacologia
20.
J Plant Physiol ; 170(2): 146-54, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23260526

RESUMO

In addition to basal defense mechanisms, plants are able to develop enhanced defense mechanisms such as induced resistance (IR) upon appropriate stimulation. We recently described the means by which several carboxylic acids protect Arabidopsis and tomato plants against fungi. In this work, we demonstrate the effectiveness of hexanoic acid (Hx) in the control of Alternaria brown spot (ABS) disease via enhancement of the immune system of Fortune mandarin. The application of 1mM Hx in irrigation water to 2-year-old Fortune plants clearly reduced the incidence of the disease and led to smaller lesions. We observed that several of the most important mechanisms involved in induced resistance were affected by Hx application. Our results demonstrate enhanced callose deposition in infected plants treated with Hx, which suggests an Hx priming mechanism. Plants treated with the callose inhibitor 2-DDG were more susceptible to the fungus. Moreover, polygalacturonase-inhibiting protein (PGIP) gene expression was rapidly and significantly upregulated in treated plants. However, treatment with Hx decreased the levels of reactive oxygen species (ROS) in infected plants. Hormonal and gene analyses revealed that the jasmonic acid (JA) pathway was activated due to a greater accumulation of 12-oxo-phytodienoic acid (OPDA) and JA along with a rapid accumulation of JA-isoleucine (JA-Ile). Furthermore, we observed a more rapid accumulation of abscisic acid (ABA), which could act as a positive regulator of callose deposition. Thus, our results support the hypothesis that both enhanced physical barriers and the JA signaling pathway are involved in hexanoic acid-induced resistance (Hx-IR) to Alternaria alternata.


Assuntos
Alternaria/patogenicidade , Antifúngicos/farmacologia , Caproatos/farmacologia , Citrus/imunologia , Citrus/microbiologia , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Citrus/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...